16 research outputs found

    Distributed Average Consensus under Quantized Communication via Event-Triggered Mass Summation

    Full text link
    We study distributed average consensus problems in multi-agent systems with directed communication links that are subject to quantized information flow. The goal of distributed average consensus is for the nodes, each associated with some initial value, to obtain the average (or some value close to the average) of these initial values. In this paper, we present and analyze a distributed averaging algorithm which operates exclusively with quantized values (specifically, the information stored, processed and exchanged between neighboring agents is subject to deterministic uniform quantization) and relies on event-driven updates (e.g., to reduce energy consumption, communication bandwidth, network congestion, and/or processor usage). We characterize the properties of the proposed distributed averaging protocol on quantized values and show that its execution, on any time-invariant and strongly connected digraph, will allow all agents to reach, in finite time, a common consensus value represented as the ratio of two integer that is equal to the exact average. We conclude with examples that illustrate the operation, performance, and potential advantages of the proposed algorithm

    Online Distributed Learning with Quantized Finite-Time Coordination

    Full text link
    In this paper we consider online distributed learning problems. Online distributed learning refers to the process of training learning models on distributed data sources. In our setting a set of agents need to cooperatively train a learning model from streaming data. Differently from federated learning, the proposed approach does not rely on a central server but only on peer-to-peer communications among the agents. This approach is often used in scenarios where data cannot be moved to a centralized location due to privacy, security, or cost reasons. In order to overcome the absence of a central server, we propose a distributed algorithm that relies on a quantized, finite-time coordination protocol to aggregate the locally trained models. Furthermore, our algorithm allows for the use of stochastic gradients during local training. Stochastic gradients are computed using a randomly sampled subset of the local training data, which makes the proposed algorithm more efficient and scalable than traditional gradient descent. In our paper, we analyze the performance of the proposed algorithm in terms of the mean distance from the online solution. Finally, we present numerical results for a logistic regression task.Comment: To be presented at IEEE CDC'2

    Distributed Optimization via Gradient Descent with Event-Triggered Zooming over Quantized Communication

    Full text link
    In this paper, we study unconstrained distributed optimization strongly convex problems, in which the exchange of information in the network is captured by a directed graph topology over digital channels that have limited capacity (and hence information should be quantized). Distributed methods in which nodes use quantized communication yield a solution at the proximity of the optimal solution, hence reaching an error floor that depends on the quantization level used; the finer the quantization the lower the error floor. However, it is not possible to determine in advance the optimal quantization level that ensures specific performance guarantees (such as achieving an error floor below a predefined threshold). Choosing a very small quantization level that would guarantee the desired performance, requires {information} packets of very large size, which is not desirable (could increase the probability of packet losses, increase delays, etc) and often not feasible due to the limited capacity of the channels available. In order to obtain a communication-efficient distributed solution and a sufficiently close proximity to the optimal solution, we propose a quantized distributed optimization algorithm that converges in a finite number of steps and is able to adjust the quantization level accordingly. The proposed solution uses a finite-time distributed optimization protocol to find a solution to the problem for a given quantization level in a finite number of steps and keeps refining the quantization level until the difference in the solution between two successive solutions with different quantization levels is below a certain pre-specified threshold

    Finite-Time Distributed Optimization with Quantized Gradient Descent

    Full text link
    In this paper, we consider the unconstrained distributed optimization problem, in which the exchange of information in the network is captured by a directed graph topology, and thus nodes can send information to their out-neighbors only. Additionally, the communication channels among the nodes have limited bandwidth, to alleviate the limitation, quantized messages should be exchanged among the nodes. For solving the distributed optimization problem, we combine a distributed quantized consensus algorithm (which requires the nodes to exchange quantized messages and converges in a finite number of steps) with a gradient descent method. Specifically, at every optimization step, each node performs a gradient descent step (i.e., subtracts the scaled gradient from its current estimate), and then performs a finite-time calculation of the quantized average of every node's estimate in the network. As a consequence, this algorithm approximately mimics the centralized gradient descent algorithm. The performance of the proposed algorithm is demonstrated via simple illustrative examples

    Asynchronous Distributed Optimization via ADMM with Efficient Communication

    Full text link
    In this paper, we focus on an asynchronous distributed optimization problem. In our problem, each node is endowed with a convex local cost function, and is able to communicate with its neighbors over a directed communication network. Furthermore, we assume that the communication channels between nodes have limited bandwidth, and each node suffers from processing delays. We present a distributed algorithm which combines the Alternating Direction Method of Multipliers (ADMM) strategy with a finite time quantized averaging algorithm. In our proposed algorithm, nodes exchange quantized valued messages and operate in an asynchronous fashion. More specifically, during every iteration of our algorithm each node (i) solves a local convex optimization problem (for the one of its primal variables), and (ii) utilizes a finite-time quantized averaging algorithm to obtain the value of the second primal variable (since the cost function for the second primal variable is not decomposable). We show that our algorithm converges to the optimal solution at a rate of O(1/k)O(1/k) (where kk is the number of time steps) for the case where the local cost function of every node is convex and not-necessarily differentiable. Finally, we demonstrate the operational advantages of our algorithm against other algorithms from the literature
    corecore